A FORMAL PROOF OF THE KEPLER CONJECTURE

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A formal proof of the Kepler conjecture

This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project. 2010 Mathematics Subject Classification: 52C17

متن کامل

External Tools for the Formal Proof of the Kepler Conjecture

The Kepler conjecture asserts that no packing of congruent balls in three-dimensional Euclidean space has density greater than that of the familiar cannonball arrangement. The proof of the Kepler conjecture was announced in 1998, but it went several years without publication because of the lingering doubts of referees about the correctness of the proof. In response to these publication hurdles,...

متن کامل

A Revision of the Proof of the Kepler Conjecture

The Kepler conjecture asserts that no packing of congruent balls in three-dimensional Euclidean space has density greater than that of the face-centered cubic packing. The original proof, announced in 1998 and published in 2006, is long and complex. The process of revision and review did not end with the publication of the proof. This article summarizes the current status of a long-term initiat...

متن کامل

The Kepler Conjecture

We present the final part of the proof of the Kepler Conjecture.

متن کامل

A Computer Verification of the Kepler Conjecture

The Kepler conjecture asserts that the density of a packing of congruent balls in three dimensions is never greater than π/ √ 18. A computer assisted verification confirmed this conjecture in 1998. This article gives a historical introduction to the problem. It describes the procedure that converts this problem into an optimization problem in a finite number of variables and the strategies used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Pi

سال: 2017

ISSN: 2050-5086

DOI: 10.1017/fmp.2017.1